
On the Generative Power of Simple H SystemsLakshminarayanan SubramanianMuralidhar TalupurKamala KrithivasanC. Pandu RanganDepartment of Computer Siene and EngineeringIndian Institute of Tehnology, MadrasChennai-600 036, IndiaAbstratIn this paper, we prove that the power of Simple H-systems of the(2,3) type with permitting ontexts and target alphabet is equal toExtended H-systems with permitting ontexts and radius of the rulesequal to one. We also prove interesting results on Simple ExtendedH-systems and Extended H-systems with forbidden ontexts.Keywords: Spliing systems, simple H systems, permitting and for-bidden ontexts and ardinality of ontext.1 IntrodutionTom Head [4℄ initiated a new appealing branh of formal language theoryalled Spliing Systems. The basi notion is that of spliing, a formal modelof the reomb inant behavior of DNA sequenes under the inuene of re-strition enzymes and lygases. A slight modi�ation of this system was alledas H-system by Paun [5℄.By adding the notion of terminal alphabet to a H-system, we obtain anextended H-system [5, 9℄. The power of suh a system, with the set of spliing1



rules forming a regular language, turns out to be very large; these systemsharaterize the family of reursively enumerable languages [1, 7℄. In thispaper, we onentrate on a spei� extended H-system having the radiusone.In [6℄, the notion of Simple H-systems was introdued. The possibility ofpermitting ontexts and target alphabet for Simple H-systems was studiedin [2℄ and many interesting results were obtained. In this paper, we studySEH systems of the (2; 3) type.In this paper we prove that the power of SEH system of the (2; 3) typewith permitting ontexts is equivalent to Extended H-system with radiusequal to one and permitting ontexts. We also prove interesting results forSimple Extended H-systems with forbidden ontexts. This paper also de�nesa new term alled the ardinality of ontext in Extended H-systems. We provethat ardinality of ontext adds no power to EH systems with permittingontexts but plays a very important role in forbidden ontexts.In setion 2, we give the basi de�nitions. Setion 3 desribes the role ofardinality of ontext in Extended H-systems. In setion 4, we prove thatSEH2;3(p) is equal to EH(FIN; p[1℄). In setion 5, we prove an interestingresult on SEH system of (2; 3) type with forbidden ontexts. In setion 6,we present our onlusions.2 Preliminaries2.1 Extended H SystemsThe spliing operation is a formal model of the DNA reombination underthe e�et of restrition enzymes. A spliing rule (over an alphabet V ) is astring r = u1#u2$u3#u4 where u1; u2; u3; u4 2 V � and #; $ are two speialsymbols not in V .For x; y; z; w 2 V � and r as above we write (x; y) `r w i� x = x1u1u2x2; y =y1u3u4y2; w = x1u1u4y2 for some x1; x2; y1; y2 2 V �.We say that we splie x; y at the sites u1u2; u3u4. These sites enode thepatterns reognized by restrition enzymes able to ut the DNA sequenesbetween u1; u2, respetively between u3; u4. The radius of a spliing rule isthe length of the longest string u1; u2; u3; u4.An extended H system is a quadruple  = (V; T; A;R) where V is the2



total alphabet, T � V is the target alphabet, A � V � represents a �nite setof axioms and R � V �#V �$V �#V � is a set of spliing rules.For any L � V � and  = (V; T; A;R) we de�ne�(L) = fwj(x; y) `r w for x; y 2 L; r 2 Rg�0(L) = L�i+1(L) = �i(L) [ �(�i(L)); i � 0��(L) = [i�0�i(L)The language generated by  isL() = ��(A) \ T �An Extended H-System with permitting ontexts is a quadruple  =(V; T; A;R) where V; T; A are the same as de�ned earlier and R is a �nite setof triples p = (r = u1#u2$u3#u4; C1; C2) where C1; C2 � V and r is a usualspliing rule.In this ase (x; y) `p w i� (x; y) `r w and all symbols of C1 appear in xand all symbols of C2 our in y.An Extended H-System with forbidden ontexts is a quadruple  =(V; T; A;R) where V; T; A are the same as de�ned earlier and R is a �nite setof triples p = (r = u1#u2$u3#u4; C1; C2) where C1; C2 � V and r is a usualspliing rule.In this ase (x; y) `p w i� (x; y) `r w and all symbols of C1 do not appearin x and all symbols of C2 do not our in y.EH(FIN; p[k℄) refers to the family of languages generated by Extend-ed H-Systems with permitting ontexts, �nite set of axioms and rules withmaximum radius equal to k for k � 1. In a similar fashion, one an de�neEH(FIN; f [k℄) to be the family of languages generated by Extended H sys-tems with forbidden ontexts, �nite set of axioms and rules with maximumradius equal to k.Let us de�ne a new term ardinality of ontext to be the maximum sizeof a ontext in a rule in the Extended H system. An Extended H-system is said to have a ardinality of ontext equal to n if every rule r = (p; C1; C2)satis�es the onstraint jC1j � n and jC2j � n and n is the smallest integerwith this property.Let EH(FIN; p[k; n℄) de�ne the family of languages generated by Ex-tended H systems with permitting ontexts, �nite set of axioms and ruleswith maximum radius equal to k and maximum ardinality of ontext equal3



to n. Similarly one an de�ne EH(FIN; f [k; n℄) for forbidden ontexts.In this paper we will investigate the properties of these languages andassoiate them with Simple H-Systems. We will prove that the ardinalityof ontext plays no role in permitting ontexts but has an important role inforbidden ontexts.2.2 Simple H SystemsA Simple H-System is a triple  = (V;A;M) where V is the total alphabet, Ais a �nite language over V and M � V . The elements of A are alled axiomsand those of M are alled markers. In [6℄ where Simple H-Systems were in-trodued, one takes four ternary relations on the language V � , orrespondingto spliing rules of the forma#$a#;#a$#a; a#$#a;#a$a#where a is an arbitrary element of M . The rules listed above orrespondto spliing rules of type (1; 3); (2; 4); (1; 4) and (2; 3) respetively. Clearlyrules of types (1; 3) and (2; 4) de�ne the same operation for x; y; z 2 V � anda 2M . We obtain(x; y) `a(1;3)or(2;4) z i� x = x1ax2; y = y1ay2; z = x1ay2 for some x1; x2; y1; y2 2V �For the (1; 4) and the (2; 3) types we have(x; y) `a(1;4) z i� x = x1ax2; y = y1ay2; z = x1aay2 for some x1; x2; y1; y2 2V �(x; y) `a(2;3) z i� x = x1ax2; y = y1ay2; z = x1y2 for some x1; x2; y1; y2 2 V �Similar to Extended H-systems we de�ne for a language L � V � and (i; j) 2f(1; 3); (2; 4); (1; 4); (2; 3)g. We denote�(i;j)(L) = fzjz 2 V �; (x; y) `a(i;j) z for x; y 2 L; a 2MgDe�ne�0(i;j)(L) = L�k+1(i;j)(L) = �k(i;j)(L) [ �(i;j)(�k(i;j)(L)); k � 0��(i;j)(L) = [k�0�k(i;j)(L)The language generated by  with spliing rules of type (i; j) is de�ned asL(i;j)() = ��(i;j)(A)One an visualize an extension to Simple H-Systems with permitting on-texts and terminal alphabet. A Simple H-System with terminal alphabet is4



one in whih a set T � V is identi�ed as the target alphabet and only ele-ments of T � whih are present in L() are aepted by the language. This isalled Simple Extended H System(SEH System). A Simple H-System withpermitting ontext has rules of the form (a; b; ) with a; b;  2 V . Suh atriple represents a spliing rule using the marker a, whih is applied to twostrings x; y 2 V � only if the symbol b appears in x and  in y.Similar to permitting ontext, one an have forbidden ontext for SimpleH systems. A triple (a; b; ) represents a spliing rule using the marker a,whih an be applied to two strings x; y 2 V � if and only if b does not appearin x and  does not appear in y.In this paper we only onsider rules of the (2; 3) type into onsideration.Formally we de�ne a Simple H-System of (2,3) type with permitting ontextand target alphabet as a quadruple  = (V; T; A;R) where V is the totalalphabet, T is the target alphabet, A is a �nite set of axioms and R is a setof spliing rules of the form (a; b; ). For x; y 2 V �; r = (a; b; ) 2 R(x; y) `r z i� x = x1ax2; y = y1ay2; z = x1y2 for some x1; x2; y1; y2 2 V �and b appears in x and  appears in y.All languages derivable using this mode of derivation with permittingontext and target alphabet belong to the SEH(2;3)(p) family. All languagesderivable using the (2; 3) mode of derivation with forbidden ontext andtarget alphabet belong to the SEH(2;3)(f) family.3 The Role of Context in Extended H Sys-temsIn this paper we prove that the power of SEH(2;3)(p) is the same as that ofEH(FIN; p[1℄). There are two features of Simple H-Systems whih makesthem by de�nition look like a very speial sublass of Extended H System-s. One important feature is that of the struture of the spliing rules inthe Simple H-Systems. Another important feature that makes Extended H-systems look very powerful is the presene of permitting ontexts of arbitrarysizes. In SEH systems the size of the permitting ontext is restrited to one.Formally, a rule r in a Extended H System is of the form (p;C1; C2) whereC1; C2 an be arbitrary subsets of the alphabet V but the same rule is validin Simple H-Systems i� jC1j � 1; jC2j � 1.5



In this setion we show that the power of Extended H-Systems is notenhaned by the presene of permitting ontexts of arbitrary sizes. For anyarbitrary Extended H-System , we present an equivalent EH system 0 inwhih eah rule has its permitting ontext redued to size one. We also showthat for every language L in Extended H-system with forbidden ontexthaving a ardinality of ontext greater than one there is a orrespondingmarker language L$ in EH systems with ardinality of forbidden ontextequal to 2.A spliing system is said to satisfy the property � i� every rule r 2 R isof the form (p; C1; C2) where p = (u1#u2$u3#u4) is a spliing rule of radiusone and jC1j = 1; jC2j = 1. A spliing system satisfying property � has aardinality of ontext equal to 1.Theorem 1: For every spliing system  = (V; T; A;R) 2 EH(FIN; p[1℄)there exists an equivalent spliing system 0 = (V 0; T; A0; R0) 2 EH(FIN; p[1℄)suh that 0 satis�es property � and L() = L(0).Proof:Let  = (V; T; A;R) be a EH(FIN; p[1℄) system. An equivalent 0, inwhih eah ontext is of ardinality one, is onstruted below. First onstrutthe following sets:V = f, Æ j C �V , C 6= ;gVj = fNa j a 2VgA = fÆ1Æ2 , Æ2Æ1 j C1 6= ;, C1, C2�V, C2= C1[fag for some a2VgAa = fÆ, Æ j C �V, C 6= ;gAd = fx j x 2A, all elements in C appear in xgAe = fD, D j C �V, C 6= ;gR = f ( Æ2#Æ1$Æ1#, Æ2 , a), ( # Æ1$Æ1#Æ2 , a, Æ2) j C2= C1[fag fora 2V gRa =f (Æ #$#, Æ, Na),( #$# Æ,Na , Æ)j C �V , a2VgAf = fB, B j C �VgRf = f (B#$ #, B ,0 ) , (#$#B , 0 , B) j C;C 0 �V gAg = fBÆ, ÆB j C �Vg 6



Rg = f (Æfag#B$B#, Æfag, a), (#B$B#Æfag, a, Æfag) j a 2V gRh = f ( D#$#, D, 0 ), ( # $#D, 0, D) j C;C 0 �V gAi = fD, M, MgRi = f(#D$D#, M, ;), (#D$D#, ;, M), ( #$#, D, ;), ( # $#,;, D), (#M$M#; ;; ;) j C �VgRs = f (a#Nb$N#d , 1, 2 ) j there exists a rule (a#b$#d; C1, C2)in R gNote that we are onsidering only the rules of the form (a#b$#d, C1,C2). There is no loss of generality in this for, any rule in whih one or moreof 'a', 'b', '', or 'd' are missing is equivalent to a set of rules in whih eahmissing position is replaed, suessively, by all letters of V.Aj = f aNa, Naa j a 2V gRj = f ( #a$a#Na, Æ, Na ), ( Na#a$a#, Na, Æ ) j C �V, a 2VgV' = V [fB , D , Mg [V [VjR' = Ra [ R [ Rf [ Rg [ Rh [ Ri [Rj [RsA' = Aa [A [Ad [Ae [Af [Ag [Ai [AjAnd 0 = (V 0; T; A0; R0).The above spliing system works as follows. The rules and axioms indexed'i' and 'h' are for removing elements not belonging to V from strings of theform 1�2to produe the required strings.The whole mehanism is entered around strings of the form 1�2.Onesuh a string is produed rules and axioms in the sets indexed from 'a' to'g' do the following. First a B is appended to one of the ends of the abovestring (sets with index 'f' do this). Then the ontext present in the string �,that is the set of all the distint letters of V present in �, will be apturedin a letter of the form Æ where C is the set mentioned above. The rules thatdo this are R , Ra.The string � will have letters belonging only to V as willbe lear from the desription given below. After this the string (whih willnow be of the form Æ1 �2 or 2�Æ1) will be made ready to take part inanother spliing .The rules of Rj ut the string at some a 2 V and so oneend of the string wil be bound by Na and on the other end the Æ1 is replaedby 1. So the string will now be of the form 1�'Na or Na�'1. This string7



an now enter spliings with other strings of the same form aording to therules of Rs whih simulate the rules of R.The whole proess is shown below. Suppose we start with the strings1�2 and 3�4. Then the following spliings will our(B1, 1�2) ` B�2 (using a rule from Rf)(ÆfagB , B�2) ` Æfag�2 (using a rule from Rg )(ÆÆ0 , Æ0 �2) ` Æ �2 (using a rule from R )( Æ�0ab�2 , bNb) ` Æ �0aNb ( using a rule from Rj)(Æ , Æ �'Na )` �'aNb ( using a rule from Ra)Similarly 3�4 derives Nd�'0These two strings will ombine aording to a rule ( a # Nb $ N # d , ,0) to produe �0� 00From this string �0� 0 will be produed as follows.(D , �0� 00) ` D�0� 00 (using a rule from Rh)(D�0� 00 , 0M ) ` D�0� 0 M (using a rule from Ri)(D ,D�0� 0 M) ` �0� 0 M (using a rule from Ri)( �0� 0 M , M) ` �0� 0 (using a rule from Ri )We now prove that  is equivalent to 0.Claim 1: If 0 produes a string x then it must be produed by .Proof : For strings derived in four steps in 0 the laim is true from the thefat that x is an axiom of 0 if x is an axiom of  and only suh stringsan be produed in three steps(three is the minimum number of stepsrequired to produe a string from V* in 0). Assume that the assertion istrue for strings whih are derived in less than k steps where k is the numberof steps taken to derive x in 0. Now x must have been produed from astring of the form 1x2.This in turn must have been produed fromstrings of the form 1u'aNb and Ndv'2. These must have been produedfrom strings 1u3 and 4v2for some C3 and C4 as an be seen from theexample shown above.By indution hypothesis u and v will be produed in8



 (note that from the onstrution of the system u and v will be produedin 0 and they will be produed in less than k steps.The number of stepstaken to apture the ontext and prepare the string for spliing take atleast as many steps as it takes to remove the symbols , whih is four).Also sine the strings 1uaNb and Ndv2 are produed from 1u3 and4v2respetively and the former pair of strings ombine aording to therule (a # Nb $ N # d ,1,2) where C1and C2 apture the ontext in uand v respetively ,there must be rule (a # b $  # d, C1, C2) in Raording to whih u and v an ombine to produe u'v'.Hene the proof.Claim 2: If a string x is produed in  then it will be produed in 0Proof: We an again use the same approah. The assertion is true forstrings derived in one step in  (the axioms) by the onstrution of 0 .Suppose the assertion is true for strings whih are derived in less than ksteps. Let x = uadv be derived from strings of the form uab� and Ædv bythe rule (a # b $  # ,. C, C'). By indution hypothesis uab� and Ædvmust have been produed in 0. So by onstrution of S the strings uaNband Ndv0 will also be produed in 0.And the rule (a # Nb $ N # d,,0) will be in R' .So the string uv0 will be produed. From thisstring uv will be produed by the rules from Ri and Rh. Hene the proof.So from the above two laims it an be seen that the 0 produes thosestrings and only those strings that are produed by . Hene ardinality ofontext does not a�et the power of the Extended H system with permitingontexts and rules of radius one.Therefore L() = L(0):2Note that the same proof is appliable to radius of arbitrary sizes. One anapply the same proof to show that EH(FIN; p[k℄) = EH(FIN; p[k; 1℄). Thislearly indiate that the ardinality of ontext adds no power to ExtendedH-systems with permitting ontext.Theorem 2: For every language L 2 EH(FIN; f [k℄) there exists alanguage L0 2 EH(FIN; f [k; 2℄) suh that L0 = L$ for a harater $ notpresent in the alphabet of L.Proof: Consider a spliing system  = (V; T; A;R) in EH(FIN,f[k℄) forsome n. For every rule r 2 R we introdue two new symbols �r; �r0. Let9



R = fr1; r2; : : : rng.Let Y = �r1�r2 : : : �rn and let Yri = �r1�r2 : : : �ri�1�ri+1 : : : �rn .Let Y 0 = �r01�r02 : : : �r0n and let Y 0ri = �r01�r02 : : : �r0i�1�r0i+1 : : : �r0n.Let V0 = V [fpg for some p =2 V . Transform every rule r = (q; C;D) 2 Rwhere C = � or D = � to rules of the form r = (q; C 0; D0) where C 0 = fpg ifC = � else it is equal to C and D0 = fpg if D = � else it is equal to D.This transformation has no e�et on L() sine we have introdued aforbidden ontext on a harater not present in V . The proof presentedbelow requires that every rule has non-empty forbidden ontext. The abovetransformation does not inrease the ardinality of ontext of .Construt 0 = (V 0; T 0; A0; R0) 2 EH(FIN; f [k; 2℄) as follows:T 0 = T [ f$gV = fCjC 6= �; C � V0gVr = f�r; �r0jr 2 RgV 0 = V0 [ V [ Vr [ fZ;X;X 0; Z 0; Z 00; X 00;$gAs = fY 0ZwXY; Y 0XwZY jw 2 Ag[fZZ 00; Z 00$;Z 0Y ;Z 0ZY ;Y 0ZX 0;Y 0X 0;X 00gA = fXWY; Y 0WX jX;W � V;X 6= �;W = X [ fag for some a 2 V gAe = fCYri; Y 0riDjri = (p; C;D) 2 RgAd = fZCY; Y 0CZjjCj = 1; C � V0gA0 = As [ A [ Ad [ AeR = f(#X$X#; a; Z); (#X$X#; Z; a)jX � V � faggRd = f(Z#$Z#C ; a;X); (C#Z$#Z;X; a)ja 2 V; C = faggRr = f(p; f�ri;$g; f�r 0i ;$g)jri = (p;C ;D) 2 RgRe = f(Z#C$C#; �; f�r; Xg); (#D$D#Z; f�r0; Xg; �)jr = (p; C;D) 2RgRf = f(#X$#Z 0; �r0; �r0); (X 0#$X#; �r; �r)jr 2 RgRp = f(#Z$Z#Z 00; �; �); (#Z 00$Z 00#$; fX ;Zg; �); (X#$#X 00; f$;Zg; �)gRg = f(#Z 0$Z 0#Z; fZ;X 0g; X); (Z#X 0$X 0#; X; fZ;Z 0g)jr 2 RgR0 = R [Rd [ Re [Rf [ Rr [ Rp [RgThe ardinality of ontext of 0 is 2 and the radius of 0 is equal to the ra-dius of . Therefore one an learly see that 0 belongs to EH(FIN; f [k; 2℄).We will now prove that the language generated by 0 is in fat equal to thelanguage generated by  appended with a onstant letter $.A string x is said to satisfy the forbidden ontext C � V0 if all theharaters of C are not present in x. 10



The spliing system 0 satis�es the following property:Any string w 2 V � derivable in any intermediary step of 0 and of the formY 0XyZCY or Y 0CZyXY is suh that y is an intermediary string derivablein  and y satis�es the forbidden ontext C.The rules in Rr are used to simulate the rules R of . The rules in R; Rdare used to generate all the possible forbidden ontexts for a single stringx 2 V �. Every string x is initially appended with the strings ZY and XY 0 inorder to generate all the possible ontexts for the string. For a given stringY 0XxZY , 0 produes all strings of the form Y 0XxZCY where x satis�esthe forbidden ontext C. Similarly, for a given string Y 0ZxXY , 0 produesall strings of the form Y 0CZxXY where x satis�es the forbidden ontext C.Suppose C � V and x satis�es the forbidden ontext C, then we produethe string Y 0XxZCY from Y 0XxZY as follows:Assume Y 0XxZY is derivable in 0(Y 0XxZY; ZaiY ) ` Y 0XxZaiY for some ai 2 C using the orrespondingrule in Rd.Let us prove by indution on the size of the ontext C that Y 0XxZCY isderivable.Let C 0 be a subset of C suh that C 0 = C � fajg for some jBy indution hypothesis Y 0XxZC0Y is derivable.(Y 0XxZC0Y; C0CY ) ` Y 0XxZCY using the orresponding rule in RTherefore Y 0XxZCY is derivable i� x satis�es the forbidden ontext C.Similarly we an show that Y 0CZxXY is also derivable in 0.So for every string Y 0XwZY in 0 all strings of the Y 0XwZCY andY 0CZwXY are derivable i� w satis�es the forbidden ontext C.0 satis�es another important property:Every string u 2 V 0� derivable in 0 and whih does not ontain the harater�r for some r = (p; C;D) 2 R satis�es the forbidden ontext C and everystring that does not ontain the harater �r0 satis�es the forbidden ontextD. Note that the only strings w$ 2 V �$ derivable in 0 are derivable onlyfrom Y 0XwZY . For every w 2 V � derivable in , Y 0XwZY; Y 0ZwXY arederivable in 0.We will show the above result using indution on the number of spliingsteps required to produe a string w 2 V � in .Sine fY 0XxZY; Y 0ZxXY jx 2 Ag � A0, the basis step of indution is11



true.Assume that for all strings x derivable in at most k spliing steps in ,Y 0XxZY; Y 0ZxXY are derivable in 0. Let w 2 V � be derivable in  ink + 1 steps. Let w be derived from strings u; v 2 V � using rule ri 2 R.By indution hypothesis Y 0XuZY; Y 0ZvXY are derivable in 0. Let ri =(p; C1; C2) 2 R . Sine (u; v) `ri w, u satis�es the forbidden ontext C1and v satis�es the forbidden ontext C2. Therefore the strings Y 0XuZC1Yand Y 0C2ZvXY are also derivable. Using rules of Re we an also deriveY 0riZvXY and Y 0XuZYri. Using these strings and the rules of Rf one anderive Y 0riZvXY; Y 0riZvZ 0Y; Y 0XuZYri and Y 0X 0uZYri.Using the rules of R0 one an derive Y 0XwZY; Y 0ZwXY in the followingway:Using the rule (p; f�ri;$g; f� 0ri ;$g) in Rr the strings Y 0XuZYri; Y 0X 0uZYrian splie with the strings Y 0riZvXY; Y 0riZvZ 0Y to produe the strings Y 0XwXY;Y 0XwZ 0Y; Y 0X 0wXY and Y 0X 0wZ 0Y . Among the four strings produed thestrings Y 0XwXY and Y 0X 0wZ 0Y are rendered inative sine they annotsplie anymore. Using the rules of Rg the string Y 0XwZY and Y 0ZwXY arederivable from the strings Y 0XwZ 0Y and Y 0X 0wXY respetively.Therefore one an obtain Y 0XwZY and Y 0ZwXY in 0. From Y 0XwZYwe obtain w$ using the spliing rules listed below.(Y 0XwZY; ZZ 00) ` Y 0XwZ 00 using rule (#Z$Z#Z 00; �; �)(Y 0XwZ 00; X 00) ` wZ 00 using rule (X#$#X 00; fZ;$g; �)(wZ 00; Z 00$) ` w$ using rule (#Z 00$Z 00#$; fX ;Zg; �)From this we an note that for every string w derivable in , w$ isderivable in 0.Now we will prove that for every string w$ 2 V �$ derivable in 0, w ispreisely derivable in . In 0 the strings w$ 2 V �$ are derivable only fromstrings of the form Y 0XwZY .Let us prove the above step using indution on the number of spliingsteps required to produe a string w$ in 0. If Y 0XwZY 2 A0 then w 2 Aand w$ is derivable in 0. Therefore the basis step of indution is true.A string of the form Y 0XwZY an be derived in 0 only from a string ofthe form Y 0XwZ 0Y whih in turn an be produed only from two stringsof the form Y 0XuZYr; YrZvXY for some r = (p; C;D) 2 R. The stringsY 0XuZYr; Y 0rZvXY are derivable only from Y 0XuZCY and Y 0DZvXY .From this one an infer that the strings Y 0XuZY and Y 0XvZY are derivable12



in 0 and that u; v satisfy the forbidden ontext C;D respetively.By indution hypothesis we get that u; v are derivable in . In  one anhave the following spliing ation:(u; v) `r wTherefore w is derivable in .By indution one an onlude that for every w$ 2 V �$ derivable in 0,w is preisely derivable in .Therefore L(0) = L()$.From the above two theorems one an infer that the ardinality of permit-ting ontext does not add power to Extended H-Systems but the ardinalityof forbidden ontext seems to play an important role in Extended H-Systems.4 Equivalene of SEH2;3(p) and EH(FIN; p[1℄)In the previous setion, we proved that the power of Extended H-Systems isnot enhaned by the presene of permitting ontexts of arbitrary sizes. Inthis setion we derive the equivalene of SEH2;3(p) with Extended H-Systemswith ardinality of ontext restrited to one. For any arbitrary Extended H-System  in whih eah rule has its permitting ontext redued to size one,we present an equivalent SEH system 0 with rules of type (2; 3) havingpermitting ontext and terminal alphabet.4.1 NotationsLet  = (V; T; A;R) be an extended H system of radius 1 with permittingontext having a ardinality of ontext equal to 1. We introdue new symbolsof the form Xa;b for all a; b 2 V [ f�g with the exeption of X�;�.Let Ve = fXa;bja; b 2 V [ f�gg � fX�;�gV0 = V [ VeA string w 2 V �0 is said to be valid i�1. Two symbols of Ve do not our adjaent to eah other.2. if Xa;b is present in w then the left adjaent symbol of Xa;b has to be aand b its right adjaent symbol.13



3. The �rst harater  of w must be either an element of V or should beof the form X�;a for some a 2 V .4. The last harater d of w must be either an element of V or should beof the form Xa;� for some a 2 V .The boolean funtion valid assumes the value true for a string w if it isvalid, else it takes the value false.De�ne a funtion g : V �0 ! V �. For every u 2 V �0 , g(u) is obtained bysubstituting � for all haraters of Ve present in u. From the de�nition onean infer that g(w) = w i� w 2 V �.De�ne a funtion f : V � ! P (V �0 ). The funtion f is de�ned as the validpreimage of a word w 2 V � under the funtion g. Note that P (X) denotesthe power set of the set X.Mathematially, we obtainf(w) = fuju 2 V �0 ; valid(u); g(u) = wgThe funtion f an be extended to all languages L � V �:f(L) = [w2Lf(w)It is not diÆult to see thatLemma 1: For every �nite language L, f(L) is �nite.A spliing system is said to satisfy property � if and only if the followingonditions are satis�ed:For every rule r = (a#b$#d; C1; C2) where some of the alphabets a; b; ; dare �, there exists rules of the form (e#f$g#h; C1; C2) suh that the symbolsorresponding to the �� alphabets in rule r assume all possible haraters inV [ f�g.It is straightforward to note thatLemma 2: Given a spliing system  = (V; T; A;R) one an transform  to0 = (V; T; A;R0) suh that 0 satis�es property � and L() = L(0).Theorem 3: SEH2;3(p) = EH(FIN; p[1℄).Proof: Consider an extended H-system  = (V; T; A;R) that satis�esproperties � and �. We will form a simple H system 0 of the (2; 3) typewith permitting ontext and target alphabet whih generates L().14



Let Ve; V0; f and g be as de�ned earlier. 0 = (V 0; T; A0; R0) where :V 0 = V0 [ frjr 2 Rg [ fMgA0 = f(A)[fMXa;brM 0;M 0rXa;dX;dM;M 0rX;dM jr = (a#b$#d; C1; C2) 2RgR0 = f(Xa;b; C1; frg); (X;d; frg; C2); (r; fag; fdg)jr = (a#b$#d; C1; C2) 2Rg Sine A is a �nite language over V we an diretly infer that f(A) is also�nite.A string w 2 V � is said to be � derivable, if w an be derived fromthe set of rules and axioms in a sequene of spliing steps. Note that w anbe any intermediary string derived in  and need not be present in T �. Weextend the same de�nition to 0 over the set V0.We will show that for every w that is � derivable, all strings of f(w)are derivable in 0. We will also show that for every string v 2 V �0 derivablein 0, g(v) is derivable in . We will prove this assertion using indution.The indution will be on the number of spliing steps required to produea string w 2 V �. Sine f(A) � A0, for all strings w 2 V � whih are �derivable in zero steps, f(w) is 0 derivable.Assume that for all strings w 2 V � whih are �derivable in atmost ksteps, f(w) is 0� derivable. Consider a string w 2 V � whih is derived ink + 1 spliing steps. Let r 2 R be the �nal rule applied to obtain w fromstrings u; v.If r = (a#b$#d; C1; C2) then u = u1abu2; v = v1dv2 and w = u1adv2for some strings u1; u2; v1; v2 2 V �.Let P (w) denote those sets of strings in f(w) whih do not end in asymbol of the form Xa;� and Q(w) denote those set of strings in f(w) thatdo not start with a symbol of the form X�;b for some a; b 2 V .By indution hypothesis sine u; v are � derivable in atmost k spliingsteps in , all strings in f(u) and f(v) are 0�derivable.If s = s1abs2 2 V � then :f(s) = fw1w2; w1Xa;bw2jw1 2 P (s1a); w2 2 Q(bs2); a; b 2 V gTherefore any string of f(w) is of the form w1w2 or w1Xa;dw2 wherew1 2 P (u1a) and w2 2 Q(dv2). Consider an arbitrary w1 2 P (u1a) andan arbitrary w2 2 Q(dv2). We will show that both w1w2 and w1Xa;dw2are derivable in 0 for this arbitrary hoie of w1 and w2. Sine f(u) and15



f(v) are 0�derivable there exists two strings u0 2 f(u); v0 2 f(v) suh thatu0 = w1Xa;bu02 and v0 = v01X;dw2 for some u02 2 Q(bu2) and v01 2 P (v1).Now w is derived in  from u; v using rule r 2 R.To derive w1w2 and w1Xa;dw2 in 0 we splie in the following way:(w1Xa;bu02;MXa;brM 0) ` w1rM 0 using (Xa;b; C1; frg)(M 0rXa;dX;dM; v01X;dw2) `M 0rXa;dw2 using (X;d; frM 0g; C2)(M 0rX;dM; v01X;dw2) `M 0rw2 using (X;d; frM 0g; C2)(w1rM 0;M 0rXa;dw2) ` w1Xa;dw2 using (r; fag; fdg)(w1rM 0;M 0rw2) ` w1w2 using (r; fag; fdg)Therefore w1w2 and w1Xa;dw2 are 0�derivable for every w1 2 P (u1a); w2 2Q(bv2). Therefore f(w) is 0� derivable for every w that is � derivable.The spliing system 0 satis�es the following property:Every string w = w1w2 2 V �0 is derived from two strings of the form w1rand rw2 where w1; w2 2 V �0 .We will prove by indution that for every w 2 V �0 that is derivable in 0,g(w) is � derivable. We again apply indution on the number of spliingsteps needed to derive w.Note that A0 \ V �0 = f(A) and g(f(A)) = A. Thereby for all stringsw 2 V �0 whih are derivable in zero steps, g(w) is  derivable.Assume that for all strings w 2 V �0 whih are 0�derivable in atmost ksteps, g(w) is � derivable. Consider a string w 2 V �0 derived in k+1 steps.w = w1w2 or w1Xa;dw2 derived from strings of the form u1 = w1r; u2 =rw2; u3 = rXa;dw2 where w1; w2 2 V �0 and r = (a#b$#d; C1; C2) 2 R.Note that u1; u2; u3 are derived from v1; v2 where v1 = w1Xa;bv01 and v2 =v02X;dw2 for v01; v02 2 V �0 .(w1Xa;bv01;MXa;br) ` w1r(rX;dM; v02X;dw2) ` rw2(rXa;dX;dM; v02X;dw2) ` rXa;dw2v1 and v2 are 0�derivable in atmost k steps. By indution hypothesiswe get that g(v1) and g(v2) are �derivable.Let g(v1) = s1 and g(v2) = s2.s1 = g(w1)g(v01); s2 = g(v02)g(w2)Sine v1 is a valid string, w1 must end with a and v01 must start with b.Therefore the site ab is present in g(v1). Similarly the site d must be presentin g(v2). 16



Sine w1r is derivable from v1, v1 satis�es the permitting ontext C1.Similarly we an prove that v2 satis�es ontext C2. Sine C1; C2 � V wehave that g(v1); g(v2) satisfy ontexts C1; C2 respetively.s1 = x1abx2; s2 = y1dy2r = (a#b$#d; C1; C2) and s1 satis�es C1 ands2 satis�es C2(s1; s2) `r s where s = x1ady2Sine s1; s2 are � derivable s is � derivable. w = w1w2 or w1Xa;dw2 )g(w) = g(w1)g(w2) = sTherefore g(w) is �derivable.By indution we thereby infer that for all w 2 V �0 whih is �0 derivableg(w) is �derivable.We have shown that for every w that is �derivable, f(w) is �0 deriv-able. Sine f(w)\V � = fwg , wis0� derivable. (1) Similarly for every w 2V �0 that is 0�derivable, g(w) is �derivable. For every w 2 V �g(w) = w.(2)From (1) we infer that all the strings that are derived in  are derivablein 0. From (2) we infer that the only strings of V � that are derivable in 0are preisely the strings that are derivable in .Therefore one an infer that the set of terminal strings derived by boththese languages are the same.Therefore L() = L(0).The power of EH(FIN; p[1℄) is not redued by adding properties � and� to the spliing system. This an be seen from the lemmas proved before.For any arbitrary  2 EH(FIN; p[1℄) we an generate a language 0 2SEH2;3(p) suh that the languages generated are the same.Therefore EH(FIN; p[1℄) � SEH2;3(p).By de�nition all spliing systems  2 SEH2;3(p) belong toEH(FIN; p[1℄).SEH2;3(p) � EH(FIN; p[1℄).Hene it follows that EH(FIN; p[1℄) = SEH2;3(p).
17



5 Simple Extended H-Systems of (2,3) Typewith Forbidden ContextsIn this setion we prove an interesting result on Simple Extended H-Systemsof the (2,3) type with forbidden ontext and terminal alphabet. As de�nedearlier, we will refer to the languages in this lass as SEH2;3(f). We willshow that the two lasses of languages SEH2;3(f) and EH(FIN; f [1; 1℄) areequal.5.1 NotationsWe introdue two new symbols of the form Xa;b; X 0a;b for all a; b 2 V [ f�gwith the exeption of X�;�; X 0�;�.Let Ve = fXa;b; X 0a;bja; b 2 V [ f�gg � fX�;�; X 0�;�gV0 = V [ VeA string w 2 V �0 is said to be valid i�1. Two symbols of Ve do not our adjaent to eah other.2. If Xa;b or X 0a; b is present in w then the site where Xa;b or X 0a;b oursin w should be of the form aXa;bX 0a;bb.3. The leftmost substring  of w must either begin with an element of Vor should be of the form X�;aX 0�;aa for some a 2 V .4. The rightmost substring d of w must be either an element of V orshould be of the form aXa;�X 0a;� for some a 2 V .The boolean funtion valid assumes the value true for a string w if it isvalid, else it takes the value false.We de�ne two funtions f; g in a similar fashion to the one de�ned in theearlier setion.Lemma 3: For every �nite language L, f(L) is �nite.Proof: The proof is similar to the proof for Lemma 1.Lemma 4: Every spliing system  2 EH(FIN; f [1; 1℄) an be trans-formed to an equivalent spliing system 0 2 EH(FIN; f [1; 1℄) satisfyingproperty �. 18



Proof: Let  = (V; T; A;R) 2 EH(FIN; f [1; 1℄). Construt a spliingsystem 0 = (V 0; T; A;R0) as follows:Let p be an alphabet not in V . V 0 = V [ fpgLet  : V [ f�g ! V 0 suh that  (v) = v if v 2 V and  (�) = p.R0 = f(q;  (C);  (D)jr = (q; C;D) 2 RgClearly 0 satis�es property � and the presene of the alphabet p in theforbidden ontext of a rule does not hange the set of derivable strings in thespliing system 0.Note that Lemma 2 is independent of the type of ontext i.e forbiddenor permitting. Therefore for a given spliing system in EH(FIN; f [1; 1℄)one an onstrut an equivalent spliing system in the same lass satisfyingproperties � and �.Theorem 4: SEH2;3(f) = EH(FIN; f [1; 1℄).Proof: Consider a spliing system  = (V; T; A;R) in the extended Hsystem that satis�es properties � and �. We will form a simple H system 0with forbidden ontext and target alphabet whih generates L().Let Ve = fXa;b; X 0a;bja; b 2 V [ f�gg � fX�;�; X 0�;�gEnumerate the rules of the set R as r1; r2; : : : rn. Introdue n new symbols�1; �2; : : : �n orresponding to eah rule in R. Let Vr = f�1; �2; : : : �ng and letY denote the string �1�2 : : : �n. Let Yri denote the string �1 : : : �ri�1�ri+1 : : : �rn.V 0r = f� 0r; rjr 2 RgV0 = V [ VeLet f; g be the same funtions as de�ned before.0 = (V 0; T; A0; R0) where :V 0 = V0 [ Vr [ V 0r [ fMgAa = fM�rXa;b� 0rYr; Yr� 0rX 0;d�rM;Yr� 0rXa;dX 0a;dX 0;d�rMjr = (a#b$#d; C1; C2) 2 R; a 6= gAb = f�rMXa;bXa;d� 0r; � 0rX 0a;dX 0a;dM�r;MXa;br; rX 0a;dMjr = (a#b$a#d; C1; C2) 2 RgA0 = f(A) [ Aa [ AbRa = f(Xa;b; C1; X 0a;b); (X 0;d; X;d; C2); (� 0r; �r; �r)jr = (a#b$#d; C1; C2) 2 R and a 6= gRb = f(Xa;b; C1; X 0a;b); (X 0a;d; Xa;d; C2); (� 0r; �r; �r); (r;M;M)jr = (a#b$a#d; C1; C2) 2 Rg 19



R0 = Ra [RbSine A is a �nite language over V we an diretly infer that f(A) is also�nite.Now we will show how 0 simulates a partiular rule r 2 R of . Letr = (a#b$#d; e; f) and let two strings u; v splie using rule r and produew. We an infer that u = x1abx2 and satis�es the forbidden ontext e andv = y1dy2 and satis�es the forbidden ontext f .Sine u; v are derivable in  and by indution on the number of spliingsteps required to produe a string in , we have that f(u) and f(v) to bederivable in 0.Consider two strings u0 2 f(u) and v0 2 f(v) suh that u0 = z1aXa;bX 0a;bbz2and v0 = w1X;dX 0;ddw2.Case 1: (a 6= )(u0;M�rXa;b� 0rYr) ` z1a� 0rYr using the rule (Xa;b; e; X 0a;b)(Yr� 0rX 0;d�rM; v0) ` Yr� 0rdw2 using the rule (X 0;d; X;d; f)(Yr� 0rXa;dX 0a;dX 0;d�rM; v0) ` YrXa;dX 0a;d� 0rdw2 using the rule (X 0;d; X;d; f)(z1a� 0rYr; Yr� 0rdw2) ` z1adw2 using the rule (� 0r; �r; �r)(z1a� 0rYr; YrXa;dX 0a;d� 0rdw2) ` z1aXa;dX 0a;ddw2 using the rule (� 0r; �r; �r)Case 2: a = (u0; �rMXa;bXa;d� 0r) ` z1aXa;d� 0r using the rule (Xa;b; e; X 0a;b)(u0;MXa;br) ` z1ar using the rule (Xa;b; e; X 0a;b)(� 0rX 0a;dX 0a;dM�r; v0) ` � 0rX 0a;ddw2 using the rule (X 0;d; X;d; f)(rX 0a;dM; v0) ` rdw2 using the rule (X 0;d; X;d; f)(z1aXa;d� 0r; � 0rX 0a;ddw2) ` z1aXa;dX 0a;ddw2 using the rule (� 0r; �r; �r)(z1ar; rdw2) ` z1adw2 using the rule (r;M;M)In both ases we an produe the strings z1adw2 and z1aXa;dX 0a;ddw2whih belong to f(w).In a similar fashion all the elements of f(w) an be obtained by hoosingthe orresponding elements u0; v0 from f(u); f(v).Therefore w is the only element of V � obtainable in 0 using the simulationof the rule r 2 R, sine w 2 f(w) and f(w) \ V � = fwg.The rest of the proof is very similar to the proof method for Theorem 3.20



6 ConlusionIn this paper we have proved that the power of simple H systems of the(2; 3) type is equivalent to that of Extended H systems with spliing rulesof radius one. First, we prove that multiple ontext does not add to thepower of extended H-systems. We then provide a onstrution of a SimpleH-system whih generates the same language. This result is an interesting onesine this lass by de�nition appears as a small sublass of EH(FIN; p[1℄).This paper has initiated work in the diretion of providing forbidden on-text for simple H-systems. We have also proved that SEH2;3(f) is equal toEH(FIN; f [1; 1℄).In [8℄ it is onjetured that EH(FIN; p[1℄) = EH(FIN; f [1℄) = CF . In[3℄ it has been proved that CF � EH(FIN; p[1℄) and CF � EH(FIN; f [1℄).In [2℄ it has been proved that CF � SEH2;3(p). If the onjeture in [8℄ isproved positively, then all these lasses will beome equal to CF .There are several diretions worth pursuing. The role of ardinality of for-bidden ontext in Extended H-Systems is an interesting open problem. Thepower of simple H-systems of (1; 4) and (1; 3) types with forbidden ontextis also an exiting area to attak and is open for researh.Referenes[1℄ G.Alford, An expliit onstrution of a universal extended H system,Workshop on Moleular Computing, Mangalia,1997.[2℄ V.T. Chakaravarthy and K.Krithivasan, Some results on simple extendedH-systems, Romanian Journal of Information Siene and Tehnology,Vol. 1, Number 3, 1998, 203-215.[3℄ V.T. Chakaravarthy and K.Krithivasan, A note on Extended H systemswith permitting/ forbidden ontext of radius one, Bulletin of EATCS, 62,1997, 208-213.[4℄ T.Head, Formal Language theory and DNA: an analysis of the generativeapaity of spei� reombinant behaviours, Bulletin of Math. Biology,49(1987), 737-759. 21
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